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Technical Notes and Correspondence_

On the Rank Minimization Problem Over a Positive
Semidefinite Linear Matrix Inequality

M. Mesbahi and G. P. Papavassilopoulos

Abstract— We consider the problem of minimizing the rank of a
positive semidefinite matrix, subject to the constraint that an affine
transformation of it is also positive semidefirrite. Our method for solving
this problem employs ideas from the ordered linear complementarily
theorv and the notion of the least element in a vector lattice. This problem
is of importance in many contexts. for example in feedback synthesis

problems: such an example is also provided.

Index Terms—Feedback synthesis, least element theory, linear matrix
inequalities, rank minimization problem.

|. INTRODUCTION

The analogies between the cone of positive semidefirrite matrices
and tbe positive orthant in the Euclidean space have been the
focus of many interesting investigations in matrix theory over the
years. Recently, these analogies have been quite useful in devising
efficient algorithms for the eigenvalue optimization problems, and
more generally, for the semidefinite programming (SDP) and the
linear matrix inequality (LMI) problems [1], [3]. These analogies can
in fact be made more explicit by associating to a positive semidefinite
matrix its vector of eigenvalues, arranged in a nondecreasing order.
Through this association. many properties and questions about a
positive semidefinite matrix can be “translated,” almost mechanically,
in terms of the attributes of the corresponding: nonnegative vector
of eigenvalues. For example, the rank of a matrix can be viewed in
terms of the cardinality of the support set of the vector of eigenvalues
(counting multiplicities), the latter being the set of indexes for which
the vector has a nonzero component.

In this paper, we explore the possibility of using the analogy
between the rank of a positive semidefinite matrix and the cordiality
of the support set of the associated vector of eigenvalues to solve an
important problem which has found many applications in system and
control theory. The problem is that of minimizing the rank of a matrix.
subject to the constraint that the matrix and an affine transformation
of it are positive semidefinite. This problem will be referred to as the
MIX-RANK problem and is stated as follows:

min rank .\’ (6]
subject to: Q-t M1 X >0 (2)
X =), ©)

In(1)(3). M is a symmetry preserving linear map on the space
of svmmetric matrices, () is a symmetric matrix (Of appropriate

dimensions). and the ordering "> isto be interpreted in the sense
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of Lowner. i.e. .-t > Bif and only if .-t — Bis positive semidefinite;
similarly, .4 > B indicates that .4 — B is positive-definite.

The MIN-RANK problem has various applications in control and
system theory. For example, the bilinear matrix inequality problem
(BMI) can be shown to be closely related to the MIX-RANK
problem [8], [1 I]. The BM[, on the other hand. has been shown
by Safonover ul. [IO] to be aunifying formulation for a wide array
of control synthesis problems, including the fixed-order H > control.
jlIk,,,-synthcsis. decentralized control. robust gain-scheduling, and
simultaneous stabilization. Similarly in [5]. El Ghaoui and Gahinet
have show n that the important problems of static output feedback
stabilization. dynamic reduced-order output-feedback stabilization.
reduced-order H svnthesis, and p-synthesis with constant scaling
can be formulated as a rank minimization under an LMI constraint,
clearly an instance of the MIN-RANK problem.

Coming back to the MIN-RANK problem and using our “’dictio-
nary,” the associated problem in the Euclidean space would be the
problem of minimizing the cardinality of the support set of a vector,
subject to the constraint that tbe vector and an affine transformation
of it have nonnegative components, i.e.,

min |[support I 4)
subject to : g+ Hxr> O 5
r>9 (6)

where H is an n X n matrix, g is an n x 1 vector. and |support x}
denotes the cardinality of the support set of the vector r (counting
multiplicities). Problem (4} (6) shall be referred to as the MIN-SUPP
problem. Let .\ denote the feasible set of the MIN-SUPP problem,
i.e,

Ai={x>0:9+ Hr >0}. @)

One way of solving this problem isto start checking for the existence
of a particular support configuration in .. For example. to see whether
a vector with cardinality one exists in A. one can examine the
positivity of acolumn of H. Similarly, to check whether a vector with
asupport cardinality k existsin .\, the consistency of tbe following
system of linear inequalities can be examined:

rohy ot agh 2 (8)
r, >0 (j=1.---.k ©)

2

where #; is the Ith column of the matrix H and [ ) is some
k combination of the . indexes. corresponding to the n columns of
H. Hence. checking for the existence of asolution with a support
cardinality & amount> to solving at most w.!/i1k!lin —k | sSystems
of linear inequalities. Therefore. the MIN-SUPP problem can in
principle be solved via2"linear programs. Evidently, this approach
for solving the MIN-SUPP problem is not quite acceptable. However.
it should be noted that checking for the existence of a solution with
aparticular support cardinality can be done efficient>. For example,
the easiest case is to examine the existence of a vector in .\ with a
support cardinality one. which amounts to simply checking for the
existence of a positive column in H.

A specia case of the MIN-SUPP problem which can be solved
efficiently is the case where the matrix H in(5)isaZ matrix. A
sguare matrix is a Z matrix when al of its off-diagonal elements are
nonpositive. When H is aZ matrix. the set \(7)has an element
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whose every component is less than or equal to the corresponding
component of every other element in A. This so-called least element
of .\ has to have the minimum support in .\, since if it does not,
then it has a positive component which majorizes the corresponding
zero component of some other vector in .\ that contradicts its least
element property. To summarize, a set TC R* has aleast element x
when re€T. and for al u e T. z <u (the inequality is interpreted
componentwise). Moreover, if risthe least element of a subset of
the positive orthant, it has the minimum support cardinality in that
subset as well. Consequently, when H isa Z matrix, one can replace
the task of minimizing the cardinality of the support set of the vector
satisfying (5), (6) by finding the least element of ..

The notion of the least element is not restricted to polyhedral sets
like A\CR". In fact. to study sets with the least element property,
one merely has to have a Hilbert lattice, i.e, a Hilbert space ‘H,
a pointed convex cone which induces an ordering “>" on *, and
anin fimum operation, “iuf,” with respect to the ordering >: given
ry€H.z = inf{r.y} is such that :<z.:<y. and for dl
w<randw<y w<s, This in effect means that inf{r.y} is the
greatest lower bound of the set {z.y } with respect to the ordering
>. It can be seen easily that for vectors x and y in R*, with the
componentwise ordering, if we let z;=min{x;.y:}{i=1....n),
then == inf{z.y}. The least element theory in the case of vector
inequalities relies on the important observation that when HisaZz
matrix, the set A is closed with respect to the inf operation, i.e., if
r.y €A, theninf {z,y} € A.In this case the set A is caled a meet
semilattice, since the operation inf is exactly the operation of taking
the meet of two vectors [4]. Having a meet semilattice structure for
A, and noting that .\ is bounded from below (by the vector O) and it
is closed, one can actually find the least element of A efficiently via
alinear program. Thereby, when H isaZ matrix in the MIN-SUPP
problem (4)-(6), the minimum support element can be found by a
linear program.

There are certain issues that arise pertaining to our comparison
between the MIN-RANK and the MIN-SUPP problems. To what
extent can the result regarding the MIN-SUPP problem with a Z
matrix be generalized for the MIN-RANK problem? What is the
analogue of the Z matrix, the least element, and the meet semilattice
property for problems defined over the space of symmetric matrices?
Can one solve certain classes of the MIN-RANK problem via an SDP
(alinear program over the cone of positive semidefinite matrices)?

In this paper, we try to generalize certain aspects of the theory
of Z matrices to address the problem pertaining to the minimum
rank element of the set defined by (2), (3). The outline of the
paper is as follows. In Section 11, we provide some definitions and
properties which allow us to motivate, and subsequently introduce,
the generalization of the meet semilattice and the Z matrices (Section
1I-A). In Section 11-B, we use these generalizations to show that a
specia class of MIN-RANK problems can be solved by a convex
program. Finally, a control example is provided, and a few remarks
then conclude the paper.

A few words on the notation are necessary. 7" and A(Z) denote
the transpose and an eigenvalue of the matrix T, respectively. The
space of nXn rea matrices is denoted by R* ™, its symmetric
subset by SR™ , its positive semidefinite subset by SR}*", and
its identity matrix by I... Finally, the inner product of two square
matrices .-1 and Bin SR* ‘n isdenoted by 4. B, which is equa
to the trace of the product AB.

11. Thve MIN-RANK ProBLEM

Consider again the MI N-RANK problem (1 ® <3) with the Lowner
ordering “> . Two very useful properties of the Léwner ordering are
as follows [6].
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1) Given symmetric n X n matrices 4 and B, for any n X n

matrix T
-1 >B=T'AT ~T'BT.

2) If A> B, then \,{4)>X(B) (i = 1.-.-.n), where the
eigenvalues \;’s of both matrices .-1 and B are arranged in the
nondecreasing order.

One should note that the implication (2) does not hold in the reverse

direction. For example, the matrices

321 _ {30
.4._61 ?> andB-<0 1)

have the same set of eigenvalues, but neither 4> B nor B > A.
Let M:SR™™"—SR"*" . QeSR"*", and define

re={X>0:Q+MX)> o} (o)

to be the feasible set of the MIN-RANK problem (1 )-(3).

As mentioned at the end of the previous section, we now consider
the possibility of using ideas from the least element theory and Z
matrices to approach the problem of determining the minimal rank
meatrix of the set T (10). The main obstacle in this avenue is that
the Lowner ordering cannot be used to introduce a lattice structure
on the space of symmetric matrices. Given two symmetric matrices
A and B, the inf operation that yields the matrix C :=inf{A. B}
cannot be defined such that C < A. C< B, and the implication

D<A D<B=D=<C (11)

holds in general. In particular, the matrix inf {.-I. B} and an arbitrary
matrix D such that D <4 and D < B do not have t6 be even
comparable. Hence, any attempt to define a greatest lower bound (in
the sense of Lowner) for a set of symmetric matrices which parallels
the vector case (with componentwise ordering) runs into difficulty.

Fortunately, there is a remedy for this problem. Ando [2] realized
that for a given pair of symmetric positive semidefinite matrices,
although the set

A(4.B):={XE€SR":0<X<4.0<X < B}

does not possess a maximal point, it has in a sense “many maximal
elements.”

The set of the maximal points of A (4. B), which shall be denoted
by A, ..(-I. B), has the following property:

VD €A(A.B).3Z¢€ -, (4 B):
Z€ANAB.D<Z:
CAVENAB) (11- £ Wy 2 (12)

The matrix Z € N p(A.B' that satisfies ( 12) not only depends on
the matrices .4 and B, but also on the specific matrix D.

In [2], a complete characterization of the maximal points of the set
A(4.B), along with an agorithm for their computation, is provided.
More explicitly, in [2] the set Ay (A. B) is parameterized by a
subspace A" C range(.1)N range(B) and an nz-by-ni matrix
K such that A”“R <1I,,, where n, (respectively, n2) is the
number of positive (respectively. negative) eigenvalues of the matrix
[A7]A - [A7]B with multiplicity counted; the notation [A].A denotes
the short of the matrix 4 to the subspace \'[2]. Moreover, given
a matrix D € A(A.B), amatrix Z € A, (4. B) satisfying (12)
is constructed as

z = %{[.\'].—1 SINIB = LILTN(AV]B — [\NALYLY (13)

where L :=([A]A+ [\-](B) — 2D)/*. L™ is the inverse of L
restricted to the range of [[A\"].4 —[\"] B and |.4| denotes the positive
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square root of the matrix 42, For more details on this construction
and.in particular, the reason for the existence Of the restricted inverse
of L. the reader is referred to[2, p. 5. lines15-16: p. 10, lines 5-7].

Analogous to the case of the componentwise ordering for vectors,
we define the following generalization of a (meet semi-) lattice,

Definition I1.1: A set I’ C SR1}™"is called a (meet semi-) hyper-
lattice if for all pairs X'and Y in[ there exists Z € A(X.Y) such
that Z €T.

In the next section. we demonstrate that for an important class of
linear maps M and a negative semidefinite matrix @, the set I' (10)
isin fact a (meet semi-) hyper-lattice. In the spirit of the Z matrix
theory, we then proceed to demonstrate that having a (meet semi-
) hyper-lattice, the minima rank element can in fact be found via
convex optimization.

A note on the terminology is necessary before we start our main
discussion. Following Alizadeh [1]. a constraint optimization problem
is caled an SDP, if its variables are either (symmetric) matrices
or scalar valued. the objective is a linear functional on the product
space of the spaces of the variables, and the constraint set is defined
by linear equalities or inequalities (either componentwise or Lowner
ordering).

A. When is the Set I a (Meet Semi-) Hyper-Lattice?

In this section we show that when the linear map Af in the
definition of the set I' (10) has a particular form, and the matrix
Q is negative semidefinite, the resulting I' (10) is a (meet semi-)
hyper-lattice. For this purpose, we consider a generalization of the
Z matrices.

Definition 11.2: A symmetric preserving linear map M : SR™*"
—SR™*™ is of type Zif it can be represented as

k

MX M,

=1

MX)=X- (14)
for some matrices M,€ R ™ (1 <i<k) and integer k> 1. A
control problem which can be formulated as a Ml N-RANK problem
with atype 2 linear map is considered in Section 111.

The main result of this section is now stated.

Lemma Il. 1. Let the linear map M in the definition of the set T’
( 10) be of type 2 and the matrix 2 be negative semidefinite. Then
the set I' is a (meet semi-) hyper-lattice.

Proof: We would like to show that for two symmetric matrices

Adand BinT, there exists Z € A{A.B) such that Z €T.

We first note that the set A(1.B) is compact. It suffices to show
that for some Z € A(A.B)

k
Z» -0 +2.\LZ.\I,’.

Since Z <4 and Z < B. one has
STMZM DM AM,

and
> M zZM < > M.BAM,.

As a result of the assumption .-1. B€T, one concludes that

A7 =Q+ Y M AM » ~Q+ Y MZM >0

and
By ~Q+ Y MBM » ~Q+ Y MZM >0

for adl Z € A(A. B) (recal that Q is assumed to be negative
semidefinite). Hence for al Z € MA.BY.(-Q + 3, M. ZM]) €
A B).

In particular, for al Z € A(A.B). there exists Y € Aqyp(.1. B)
such that

Yr-Q+) M ZM, (15)
by the definition of the set Asyp (4. -B). Letg: M(A.BY=A(4.B)
be the point-to-set map such that

9(Z) = {Y EAAB):Y > -Q+ ZJI,Z.\I,’}. (16)

The map g is upper semicontinuous. To see this. let {Z; }x>: and
{Yx }x>1 be a sequence of matrices such that

Yior —Q+ > M2z

and let Zy — Z° and Yi — Y ". Define
M(ZeY) =0+ Y — Z.\I,Zk.\l,’.

The map M islinear on SR™™ x SR""and is therefore contin-
uous. Since the cone of positive semidetinite matrices is closed

o 5*_lim M(Z Yi)y= M(Z°.YT)

and therefore
Y r-Q+ ) MZTM,

hence Y* €g(Z").

Since g is upper semicontinuous on the convex set A(A, B), it
has a fixed point via the Kakutani’s Fixed Point theorem [7]. That is,
there exists a matrix Z € A(A.B) such that Z >—Q+ 3>, M, Z M.
Hence, I' is indeed a (meet semi-) hyper-lattice.

B. Finding a Minimal Rank Matrix in a (Meet Semi-) Hyper-Lattice

We now consider the problem of finding the minimal rank matrix

of the set I' defined by
r ::{_\' »0.Q+ X - Y MXM » 01 1n

with Q < 0. As we discussed in the previous section. the set I’
is a (meet semi-) hyper-lattice (Definition 11.1). We shall assume
subsequently that I is nonempty.

The following theorem provides us with an agorithm for finding
a minima rank matrix of the set I (17).

Theorem /1.2: A minima rank element of T can be found by a
semidefinite program.

Proof: Consider the following semidefinite program:

ruin 1 ..\ (18)
subject to: Q + X =) M. XM>0 (19)
x> 0. (20)

Since I is assumed to be nonempty. let A €1 (17) (such a matrix
can be found be a semidefinite program itself). Now consider instead
the problem

minl e X [2))

subject to: Q + X — Z MXM >0 (22)
X=0 (23)

TeX <Jed (24)
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It should be clear that the optimum of both SDP'S, (18)--(20) and
(21)-(24). are the same. The latter SDP has an optimum since
TN{X:I.X<]. 1} is a compact set, and I. X isa linear
functional in X'. Let X be the optimal solution of ( 18>(20). We now
claim that X is of minimal rank in T'. To show this, let ¥ €I and

Z €A(X.Y), such that Z €T (this is possible since T (17) is a
{ meet semi-) hyper-lattice). By the optjmality of X
> oAX <§:A (25)

On the other hand. since Z € A(X.,¥"), one has

M(Z) <M X)(i=1...-.n) (26)
and

A{H<N (Y i=1. -.n). (27)
In view of (25), (26) implies that A, (Z)= A(X)(=1..... n)
Thus by (27). for an arbitrary matrix } :I“

MNX)<AMY) (i = 1. -.n). (28)

Suppose now that X is not of minimal rank in T'. Then there exists Y’

such that A;(¥" )= Oand A; _\)#OforsomelndeX| Since X > O.

A.{X) >0, which violates (28). Hence X is of minimal rank in .
D

111. Fixep-Orper OUTPUT FEEDBACK PROBLEM
Let £ be a continuous-time linear time-invariant dynamical system

L. t=Ar+ Bu (29)
y=Crzr (30)
with matrix 4€R" ‘n (and al other matrices of appropriate

dimensions).
Suppose that it is desired to design a stabilizing controller of order

k for ©
2= Ax:+ Bry
u=Ckrz+ Dky

3D
(32

where 1x € R***_ We would like to check, for a given k, whether
such a controller (of fixed order) exists.

In [5], El Ghaoui and Gahinet show that this important problem in
control theory can be reduced to a MIN-RANK problem.

Theorem [i1.1[5]: There exists a stabilizing dynamic output feed-
back law of order & for ¥ if and only if there exist matrices R and
S and scalar ~ > 0 such that

AR+ R4A'< BB (33)
4.s+54<C'C (34)
and

R I
o 1)xe

~R I
rank( ’I 75> <n+k (36)

Let

._ («R 1
A

It can be shown that the above problem can be reduced to solving
the following instance of the MIN-RANK problem [9]:

min rank X (37)

subject to: AXA' - X < Q- (38)
Xec (39)

X»=0 (40)

for an appropriate choice of the matrices .4 and (symmetric) Q.
which is affine in ~+; moreover, the set £ is defined as

Loor I . nXn
X.(I \W). UV €SR )

C = {\— E 5R2nx2n
The subset £ can, for example, be defined by a set of linear equalities
of the form L E,,. X = 1, where E,, is a matrix whose errtries are
all zero, excépt theijth entry which is one (this fixes the i;jth entry
of the matrix .X to one).
Let us rewrite the above problem for ¢ > 0 as

min rank .1 (41)

subject to: (Q,—el)+ ¥ - AYA'> 0 (42)
Xec (43)

X=0. (44)

We now realize that the above problem is exactly a MIN-RANK
problem with a linear map of type 2, except that the solution has
to be found in the affine set £. This additional constraint does not
introduce a difficulty for the applicability of the approach described
earlier, provided that the restriction of the set T' (10) with the linear

map

to £ (if nonempty) is a (meet semi-) hyper-lattice (refer to [9] and
[2, pp. 8-10}). Assuming that thisisin fact the case, in order to solve
thisinstance of the MIN-RANK problem arising from the fixed-order
output feedback synthesis, one thus solves the following semidefinite
program for an appropriate choice of ¢ > 0:

nin T o X (45)

subject to: (Q,—el)+ X—AXA'> O (46)
Xer (47)

X =0 (48)

4> 0. (49)

The constraint that @.,—eI < 0 can be added as an additional
constraint to the above semidefinite program (note that in the case
where ¢ > 0 has to be chosen very large, the rank of an optimal
solution of the above SDP might only provide us with an upper bound
on the minimal rank solution). The above approach consequently
results in an efficient way that can be used to study the fixed-order
output feedback synthesis problem for the continuous-time linear
time-invariant systems.

IV. ConcLubi NG REMARKS

In this paper, we have described an approach for solving the
problem of minimizing the rank of a positive semidefinite matrix,
subject to the constraint that an affine transformation of it is also
positive semidefinite. In this direction. an approach analogous to
tinding the least element of a meet semilattice, with componentwise
ordering for vectors, is developed. However, our analysis uses some
additional ideas and concepts since the positive semidefinite ordering
cannot be used to introduce a lattice structure on the space of
symmetric matrices. The applicability of our results to the fixed-order
output feedback synthesis problem is also provided; this application
also reinforces the usefulness of exploiting the structure of the
nonconvex optimization problems an sing in control theory.
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